
DEF CON IoT Village Hardware

Hacking Exercises 2024:

Root Access for Data

and Control
By Deral Heiland, Principal Security Researcher IoT

TABLE OF ContentS

Introduction 3

PART 1
Purpose, goals, and methodology overview 3
System boot and evaluation 4
Load kernel image via TFTP 8
Flash memory review offload 13

PART 2
Single-user mode access 18
Bringing the system out of single-user mode 21
File and/or flash memory offload 28

About Rapid7 31

2

Introduction
Rapid7 was back again this year at DEF CON 32, participating at the IoT Village with our
hands-on hardware hacking exercise that teaches attendees various concepts and methods for
IoT hacking. Every year we look forward to this exercise and begin planning for it months in
advance. And every year, we receive several requests for an in-depth write-up of the exercise.

What follows is our step-by-step guide to the exercise we ran, along with some expanded
context based on the questions and discussion we had at this year's event.

This year's exercise focused on the following key areas and applications:

● Universal Asynchronous Receiver/Transmitter (UART)
● U-Boot console commands
● TFTP — trivial file transport protocol, used to transfer files over network
● OpenWRT — open-source operating system
● Single-user mode
● mount — used to mount needed file system
● dd — used to do perform bit level copies
● nc — Netcat used for network communications
● insmod — used to load kernel drivers

Part 1
Purpose, goals, and methodology overview
At times we encounter devices containing some form of security to prevent alteration of the
installed firmware, either read-only file systems or signed images — or, in the case of our
example, both. Gaining the typical root access on devices like this can be difficult or impossible.

Extracting firmware for offline testing, without utilizing more destructive means, can also be
difficult. The device we utilize for this exercise does have some capabilities designed for the
purpose of updating the firmware and recovering from corruptions, which we will leverage to
gain the access needed for data extraction and testing of live running systems from its original
operating system.

This year’s hands-on hardware hacking exercise was designed to expose attendees to a
couple of different access methods we often encountered during hardware devices testing:
TFTP and single-user mode. Attendees used these methods to gain access to a Wireless
Access Point to extract firmware and manipulate the systems for further control and
operations. To do this, the user interacted with the device’s U-Boot console via an available
UART connection on the device. With this access the attendees were shown how to load an
OpenWRT image into memory via TFTP and execute it, then use the root access of that
operating system (OpenWRT) to extract firmware from the system's flash memory and pass it
over the network to a test laptop for further examination.

3

https://youtu.be/JZCmqMz1Wvo?si=55zlCrVdDnxoxVf9

In the second phase of the exercise, the attendees interacted with the device’s U-Boot console
via UART connection to place the system into single-user mode for root access. Using
single-user mode root access, which has very limited capabilities, the attendees were shown
how to use various Linux commands to mount the needed file system and then identify and
load the correct kernel module to bring the device out of single-user mode for full functional
network communication and file system access.

In this year's exercise we used an Aruba AP-303H-US wireless access point (AP). Prior to
running the exercise we updated these devices to the latest OS version available at that time
(ArubaOS Version 8.12.0.0, build 89362), configured them with a static IP address, and set
them to run in standalone mode

System boot and evaluation
In this section of the exercise we will connect the FTDI serial communication to the serial port
on the access point (ARUBA Console Cable) and plug in power via Power over Ethernet (POE).

Note: Future Technology Devices International Limited, also referred to as FTDI, is a
hardware product designed to connect TTL Logic Serial communication to a USB. In the
case of this device, the 3.3VDC FTDI is built into the supplied USB micro to USB A
cable. This cable is an ARUBA access point console cable.

The first step is to connect all the cables as shown below in Figure 1.

● Ethernet cable plugs into POE injector and laptop (not shown)
● FTDI serial console cable connects to laptop
● POE ethernet cable connects the AP and POE injector
● POE injector power cable connects to power strip (not shown)

4

Figure 1: Cable configurations for the exercise (laptop and power strip not shown)

Next, we need to start up a serial terminal GTKTerm and configure it to access the AP’s serial
console connection on the back of the device. To do this, open Terminal by clicking on the
terminal icon in the left column, as shown in Figure 2:

Figure 2: Application icons

Once Terminal is open, we launch the serial application GTKTerm as root by running the
following command in the terminal, and when prompted for a password, log in as shown in
Figure 3:

sudo gtkterm

5

Figure 3: Launch GTKTerm

Once GTKTerm is running, we configure GTKTerm to properly communicate with the access
point over UART. This is done by selecting “configuration -> port” from the taskbar within the
GTKTerm application, as shown in Figure 4. From there we can make any changes to the
configuration setting if needed.

Figure 4: GTKTerm configuration

Here are the configurations we used for the exercise:
● Port: /dev/ttyUSB0
● Baud Rate: 9600
● Parity: none
● Bits: 8
● Stopbits: 1
● Flow control: none

Before powering up the AP, we configured GTKTerm to also capture the console screen to a log
file that will be needed later in this exercise. This is done by selecting “Log -> To file” from the
taskbar, as shown in Figure 5.

6

Figure 5: GTKTerm log settings

After the location menu launches, select the folder to write the logs out to. We used the “work”
folder and set the file Name to “defcon_log.txt” as shown below in Figure 6, and closed out the
menu with the OK button in the right corner of the application.

Figure 6: GTKTerm log name

Once the GTKTerm configuration and log settings have been completed and confirmed you can
power ON the device by attaching the POE injector or turning ON the power strip that the AP is
attached to. At this point you should see the AP start to boot up as shown below in Figure 7.

Figure 7: AP booting

7

Note: If boot up does not occur, then something may not be set up correctly. First,
re-check all cable connections and settings in the GTKTerm application. It is not
uncommon for the UART cable connection to the AP to be loose.

During the exercise we did not fully boot the device, but halting at a given point to make sure
we captured the data within the logs that we will need later. Once you see the following
grouping of “bind: Transport endpoint is not connected” on the boot screen you can move on to
the next section: “Load Kernel Image Via TFTP”.

It will take about 2 minutes to get to this point shown in Figure 8.

Figure 8: Boot console breakpoint

Once there, you can power down the AP device by unplugging the POE injector or turning OFF
the power strip that the AP is attached to.

Load kernel image via TFTP
In this section of the exercise, we will be exploring the process of loading a new kernel image
into memory and executing it. This TFTP process is often found available on many embedded
devices for the purpose of conducting upgrades or recovering from system corruption (ie. a
bricked device). We will leverage that feature, not to change the installed firmware, but to only
load an OS into memory and run it, in a way that we can control. This way, in the end, we can
get access to the original installed firmware for offloading,examining, or conducting other
possible testing exercises.

For this to work, we needed to find a bootable image or to build one for the onboard processor
of this access point.

8

Note: On this Aruba AP device, when disassembled, we find that the CPU happens to
be an IPQ4029 (Figure 9) which is an Arm Cortex-A7Wi-Fi system-on-chip (SoC).

Figure 9: CPU IPQ4029

So where would we get a kernel image that will run on this CPU (IPQ4029)? Often, the
first place I look is at the OpenWRT project to see if the CPU is supported and if the
device I am examining is directly supported. In this case we lucked out. The AP in the
exercise happens to be an Aruba AP-303H access point, and if we search the
OpenWRT project we find that its firmware has been created already. Here is a link
with instructions for installing OpenWRT on this device:

● https://openwrt.org/toh/aruba/ap-303h

In this case we do not want to install or upgrade this device to OpenWRT because that
will completely overwrite the system we are testing/hacking on. What we do want is to
locate the main image and load it into memory and execute it.

We obtained that firmware image by using the link in the above openwrt.org website to
download the initramfs image:

● https://downloads.openwrt.org/releases/22.03.5/targets/ipq40xx/generic/openw
rt-22.03.5-ipq40xx-generic-aruba_ap-303h-initramfs-fit-uImage.itb

If we did not have an already built image for the AP-303H we could have built our own
firmware images from the OpenWRT project. Directions and resources for doing that
are available at the following link. I have used this information several times in the past
with much success.

● https://openwrt.org/

The first thing we want to do is to make sure that the AP is powered off by turning off the
power strip connected to the POE injector. Also, on the laptop, shut down the “gtkterm”
application. If you do not shut down GTKTerm, which is capturing to a log file, when you restart
the AP it will start logging again and we have found this to often corrupt what you have
previously captured.

Once this is completed, we want to stop for a second and discuss what is required to make this
firmware download via TFTP successful. For the AP device to be able to successfully download
the image over TFTP we need a TFTP server. The TFTP server was already installed on the
training laptops we used at DEF CON. If you are recreating this exercise you will need to install
FTP server in your own test environment.

9

To install a TFTP server run “sudo apt-get install xinetd tftpd tftp” on your Ubuntu image. Then
configure the service by creating a configuration file /etc/xinetd.d/tftp as shown in Figure 10.

Figure 10: tftp configuration file

We can see in the tftp config file above that the TFTPD file folder path is set to
/home/lab*/Desktop/LAB/tftpboot in the server_args section, with lab* matching each individual
machine we used at DEF CON. This location is where the tftp server will read and write files to
and from. You will need to set that to the correct location you want to use as a read/write folder
for TFTP.

On the DEF CON Lab machines folder /home/lab*/Desktop/LAB/tftpboot we have placed a copy
of the OpenWRT firmware image we downloaded
(openwrt-22.03.5-ipq40xx-generic-aruba_ap-303h-initramfs-fit-uImage.itb) from the
OpenWRT project link above and renamed it to ipq40xx.ari. (Figure 11). You will also need to do
this to the TFTP read/Write folder you have previously set up.

Figure 11: tftpboot folder listing

Note: The reason it was renamed was to make the tftp download simpler. With the
firmware file renamed to ipq40xx.ari, the name will be shorter and we can take
advantage of the built-in automated features within the Aruba AP. More details of this
will be shown in the next section. If you examine the U-boot environment variables you
will find a setting showing this filename (ipq40xx.ari) being set.

Next, open a terminal and relaunch the serial application “gtkterm” by running the following
command in the terminal, and if prompted for password enter the appropriate password as
needed.

sudo gtkterm

10

Next, you need to restart the AP by powering it back on. Note that in this step you will need to
halt the autoboot process when prompted on screen: “Hit <Enter> to stop autoboot:”. You will
only have about 2 seconds to do this. If you miss it, you will need to power cycle the device and
try again. If you successfully stop autoboot you will see the “apboot>” prompt appear (Figure
12), which will give you access to the U-boot console.

Figure 12: Stop autoboot

Once you have successfully halted the autoboot and gained access to the U-Boot console, try
running a few common U-Boot console commands such as:

help Which will list available U-Boot commands

printenv Which will list the configured environment variables

An example of the printenv command being run is shown below in Figure 13.

Figure 13: printenv output

The first step before downloading the firmware image is to set up the needed IP address within
the U-Boot environment.

Note: During our exercise at DEF CON we did not have attendees save any of these
settings to the U-Boot environment. You may choose to save the settings, but if you do
not you will need to re-enter these IP addresses if your system resets or reboots.

11

Enter the following commands in the U-Boot console. The first command ipaddr sets the IP
address of the Aruba AP and the second command serverip sets the IP address for the TFTP
server.

setenv ipaddr 192.168.4.100
setenv serverip 192.168.4.123

Once the IP addresses are set, we next need to download and execute the firmware in
memory. To do this, run the following command from the apboot> console:

netget

Note: You may be wondering why we are not running the tftp command. Well
interestingly, you can! There are several options that can be run from here that will
work. For example, the following commands also work.

● netget
● netget FullFileName
● tftpboot FullFileName

In the case of the Aruba AP and IPQ4029 processor, if you rename the firmware file to
ipq40xx.ari, which is what we did, you only need to specify the command netget to tftp
the firmware into memory location 0x84000000. If you viewed the U-Boot environment
variables in the previous step you may have noticed “bootfile=ipq40xx.ari” was set
within the environment variables (Figures 13 and 14). This defines the file that netget
retrieves using tftp.

Figure 14: bootfile setting

Once you run the above command, you should see the TFTP download process kick off and
download the firmware file ipq40xx.ari to load address 0x84000000. This process should look
similar to what is shown in Figure 15.

Figure 15: TFTP download of firmware

Do not be concerned if you receive the error “Invalid image format version”; this is normal here.
Once download has completed, we can then execute the firmware in memory. To do this, run
the following command in the apboot> console:

12

bootm 0x84000000

This command bootm is telling the device to boot memory from location 0x84000000. This
should look like Figure 16. Be patient, this takes a few minutes to kick off and produce output.

Figure 16: Memory boot of kernel image

Once the console boot process appears to stop, hit the enter key a couple of times and you
should receive the OpenWRT root access prompt as shown below in Figure 17.

Figure 17: OpenWRT root prompt

Flash memory review offload
Once we have some level of access to an embedded device — even if not via the original OS as
in our case — we can still gain access to the original firmware and various partitions data. In
this section, we are going to walk through a method of gaining access to the flash memory and
then off-loading one of the flash memory partitions to a system where we could examine it, if
needed.

Before we start moving data around on the network, we need to set up network
communication. The AP device is running OpenWRT and we do not have DHCP available. We
need to manually set up network communication. To do that we run the following commands
on the AP device:

ifconfig eth0 192.168.4.100 up
ifconfig br-lan down

13

After running the above commands, you should see the following results (Figure 18) in the
OpenWRT root console:

Figure 18: ifconfig network command

Once the above network changes are made you will next need to move the GREEN network
cable from the POE injector and plug it into the 4 port hub on the Aruba AP as shown below in
Figure 19:.

WARNING: Do not unplug the RED cable! It will power off the device and you will need to start
the exercise over.

Figure 19: Green ethernet cable connections

Once the Green cable has been moved, run the following command to make sure that
communication to your laptop over the network is working properly.

ping 192.168.4.123

You can hit CTRL C to halt the ping process and should see the following results per Figure 20.

Figure 20: Ping command

14

Once the network settings have been made and validated, we can next walk through the
process to identify onboard flash and associated partition data. To view this information on the
AP device, run the following command. The output of this command should match Figure 21.

cat /proc/mtd

Figure 21: /proc/mtd output

Note: MTD stands for Memory Technology Devices. MTD is an abstracted layer for
accessing raw memory devices such as NAND flash. When you query /proc/mtd you
will see a full list of MTD devices available along with their device (dev) identification,
memory size, and name. The individual dev identification can be accessed directly via
/dev/mtd, which provides direct IO access to the flash memory:

Often when conducting testing of an IoT device it becomes useful to make backup copies of the
MTD devices for offline analysis or restoring of data if it becomes corrupted. With the current
access we have, we can accomplish this by transferring firmware partition data over the
network and capturing it. We will leverage Netcat (nc) and dd installed on both the OpenWRT
AP device and on the Ubuntu laptop.

Open a second terminal on the laptop and then change directory to work folder. To accomplish
this, go to terminal and right click terminal and select “NewWindow” as shown in Figure 22.

15

Figure 22: Open second Terminal

Then run the cd command from within the new terminal to change directory to your working
folder, in the case of our DEF CON lab this was “work” as shown in Figure 23.

cd work

Figure 23: Change directory to work folder

Note: Here is a quick breakdown of the commands you will be using next:
● nc is the command for Netcat, used to establish network communications

o -I = listen
o -p = port number

● dd is command used for doing binary copies
o of = out file
o if = in file

By combining these two tools we can move various forms of binary data back and forth
across a network connection with ease.

To do this we need to first start a Netcat listener on the Ubuntu laptop within the work folder
and redirect it to send the incoming data to a file. Run the following command within the
terminal work directory you opened on the laptop (Figure 24).

nc -l -p 1234 | dd of=mtd13.bin

Figure 24: Starting a Netcat listener

Once the above Netcat listener is started you will next need to run a command on the AP to
copy the /dev/mtd13 device and redirect that data over the network to the Netcat listener on the
Ubuntu laptop. To do this run the following command on the Aruba AP OpenWRT root console
(Figure 25).

16

dd if=/dev/mtd13 |nc 192.168.4.123 1234

Figure 25: Read and send /dev/mtd13 Over Network

The /dev/mtd13 is a small flash partition, and this should complete very fast.

Next, let’s take a quick look at the mtd13 partition data that you transferred over the network.
On the laptop from the work folder, run the following strings command. This command will
output only ascii data found within the binary file mtd13.bin. We know this partition’s name is
called u-boot-env-bak so we should see U-Boot environment variables (Figure 26).

strings mtd13.bin

Figure 26: strings Output of mtd13.bin

We have now completed the first main section of this exercise where you learned how TFTP
can be used to load a new OS kernel and execute it in memory, along with accessing the
device’s original firmware and flash memory partitions so that you can offload that data over
the network for future testing and examination. In the next section, we will explore what is
known as single-user mode and how to make changes needed to gain network
communications access.

17

Part 2
Single-user mode access
In this section we will be exploring a method to place the Aruba AP into single-user mode. In
single-user mode we will have root access, but also will have limited file system access and no
network access. This will require us to remount core sections of the operating systems and
install kernel drivers and reconfigure the device to support network communication before any
real testing or actions can be taken against the target device.

The First step is to move the GREEN network cable from the 4 port hub on the Aruba AP and
plug it back into the POE injector as shown below in Figure 27.

Figure 27: Ethernet cable connections

Next, power off the Aruba AP, wait 10 seconds, and then power it back on again. You will need
to halt the autoboot process when prompted on screen: “Hit <Enter> to stop autoboot:”. Don’t
forget you only have about 2 seconds to do this. If you miss it, you will need to power cycle the
device and try again. Once you successfully stop autoboot you will see the “apboot>” prompt
appear (Figure 28), which will give you access to the U-boot console.

18

Figure 28: Stop Autoboot

Note: Once you have successfully halted the autoboot and gained access to the U-Boot
console. You will next be running the following command to make a dynamic change
within U-Boot environment variables which will make the devices boot into single-user
mode.

setenv bootargs console=ttyMSM0,9600n8 rdinit=/sbin/init ubi.mtd=aos0
ubi.mtd=aos1 ubi.mtd=ubifs single

Here we will cut and paste what is needed to get this long command entered successfully. So
first run the following command to list the U-BOOT environment variables (Figure 29).

printenv

Figure 29: Printenv output

Use the mouse to then highlight the needed section of the command data, and right click with
mouse and select “copy” as shown in Figure 30.

19

Figure 30: Cut bootargs statement

Next on the apboot> command line, enter the following command followed by a space. After
the space, right click the mouse and select paste. It should paste the needed data after what
you entered, as shown in Figures 31 and 32.

setenv bootargs

Figure 31: Paste command

Figure 32: Pasted correctly

The final step is to enter a space at the end of the command and enter the word “single” so the
full command looks like that shown in Figure 33.

setenv bootargs console=ttyMSM0,9600n8 rdinit=/sbin/init ubi.mtd=aos0 ubi.mtd=aos1
ubi.mtd=ubifs single

Figure 33: Full command with “single” at the end

Once command looks correct, hit enter to add it to the environment variables.

20

Next, enter the following boot command followed by enter to boot the Aruba AP. The word
“single” added to the end of bootargs will force the boot into single-user mode as shown below
in Figure 34.

boot

Figure 34: Boot

Once the boot process finishes you will receive a prompt which allows you to enter commands.
Try entering the following ls -al command followed by return to list the systems file to make
sure all is normal (Figure 35).

ls -al

Figure 35: ls -al command

Bringing the system out of single-user mode
As part of the next set of learning objectives in this exercise, it is important to understand that
in single-user mode very little is functional and to be able to do further testing and hacking you
will need to bring certain features back online, such as file system mounts and network kernel
drivers.

To start bringing file systems back online, run the following command that we used earlier in
the exercise to list the available MTD devices and look at the results shown in Figure 36.

cat /proc/mtd

Figure 36: Cat /proc/mtd results

21

As you can see, we don’t appear to have access to any MTDs. Actually, proc gives us a view
and access into system kernel objects. Without it we can do very little.

Next, we need to mount up the needed file systems which will give us the access and functions
we need. To do this run the following commands. The first two are needed, the second two are
kind of optional, at least for what we are doing.

mount -t proc proc /proc
mount -t sysfs sysfs /sys
mount -t devpts devpts /dev/pts
mount -t debugfs none /sys/kernel/debug

With proc loaded we should have access to needed kernel processes. You can test this again
by running cat /proc/mtd to see the output. You should see different results this time, as shown
in Figure 37.

cat /proc/mtd

Figure 37: cat /proc/mtd results

In the following sections we will focus on how to get network services running. To do this we
need to load kernel drivers for the internal ethernet chipsets.

What we do know is that when the system boots up it knows which drivers to load, so the first
step is to look at the console boot data you were asked to capture and save in the beginning of
the exercise.

Open the folder you saved the boot log to — for the DEF CON exercise this folder was the LAB
folder on the desk — then open the work folder, and you should see the file you saved called
defcon_log.txt. Next, double click on that file with your mouse to open it. It should open and
may prompt you with “There was a problem opening the file”. If so, just click the Edit Anyway
button to proceed as shown in Figure 38.

22

Figure 38: Opening defcon_log.txt console log file

Once the defcon_log.txt file is opened for editing you will need to search for the key word
“ethernet”. This can be done by clicking on the drop-down menu in the upper right corner, then
selecting Find as shown in Figure 39.

Figure 39: Select Find

In the Find entry field, enter “ethernet” and it will automatically search out the word ethernet
and display it. An example of this is shown in Figure 40.

Figure 40: Results for Find Ethernet

23

As you can see, there are only two results for “ethernet” and only one of those contains the
word “driver”. Since our goal is to find the correct drivers, this is probably what we are looking
for. Unfortunately, this console log file does not show the names for the actual driver but is a
good clue.

Typically, information written to the console file after kernel load during system startup is
generated by the system initialization script processes during startup. So, we need to find the
initialization processes that the system used to load kernel drivers for ethernet interfaces. We
can see in Figure 40 above that the initialization process wrote out the words “Installing
glenmorangie ethernet driver“ to the console. Let's look at the initialization process and see if
we can find this.

Note: Initialization process scripts are stored in the /etc/init.d/ folder. These system
initialization scripts are used to start and stop a system.

The initialization processes are located in the folder /etc/init.d/. Using a command line terminal,
your first step is to change directory to /etc/init.d/ and then list files within that folder by running
the following command on the Aruba AP (Figure 41).

cd /etc/init.d

ls

Figure 41: File listed in /etc/init.d/ folder

From within the /etc/init.d/ folder we can run the following grep commands using “Installing
glenmorangie ethernet drive” string or variations of that string as shown below to attempt to
narrow down the possible location of the ethernet driver kernel load.

1. grep “Installing glenmorangie ethernet driver” *
2. grep “glenmorangie ethernet driver” *
3. grep “ethernet driver” *

We can see in Figure 42 that only the third command returned any data. Upon examination of
that data we can see that the name “Glenmorangie” was actually a variable “$machine”. So
that is why our search did not work for the first two. We can also see the name of the
initialization file listed on the left side: rcS which stands for “Run Control Start.”

24

Figure 42 Grep search

Now that we know that the /etc/init.d/rcS is the run control file that installed the drivers we
need to examine it closer to see what the name/names of the kernel drivers for ethernet are.
Since we are attached to the AP devices with a serial console, we are unable to open any
screen edit application such as vi. So, to gather the data needed we can use some other search
features of grep. Grep allows us to read lines before our search term “ethernet driver” with -B or
read lines after our search term “ethernet driver” with -A.

Using grep with the read after our search term (-A), we will set it to read five lines after our
search term of “ethernet driver.” To do this, use the following command.

grep -A5 “ethernet driver” rcS

After running this command, you will see results for more than one “ethernet driver” found.
Make sure to scroll down until you find the correct string that fully matches “Installing $machine
ethernet driver” as shown in Figure 43.

25

Figure 43: Grep with 5 lines returned

As we look at the output, we can see there are three kernel drivers listed following our search
term that we will need to install to enable ethernet network:

● qrfs.ko
● qcx-ssdk.ko
● essedma.ko

The easiest way to install this is to cut and paste them by highlighting each one, right clicking
to copy, and then using the same right mouse click to paste them on the command line, and
hitting enter to execute as shown in Figures 44 and 45. Make sure all three are installed and in
order.

insmod /lib/modules/qrfs.ko
insmod /aruba/lib/qca-ssdk.ko
insmod /lib/essedma.ko

26

Figure 44: Copy kernel driver command

Figure 45: Paste kernel driver command and execute

Note: To load kernel drivers, we used the command insmod. If you ever need to unload
a kernel driver, the correct command to use is rmmod.

The final part of this is to assign an IP address and bring up the ethernet interface and test it to
make sure drivers installed correctly and that ethernet communication is working. To do this,
run the following command. If successful you will see similar results as shown in Figure 46.

ifconfig eth0 192.168.4.100 up
ping 192.168.4.123

27

Figure 46: Start eth0 interface and ping laptop

File and/or flash memory offload
Once you have network communications working properly, you may want to offload flash
memory or copy some of the file structure like the /etc/init.d folder and the various run control
files for further examination. In this section we are going to walk through a method for copying
the run control file from the /etc/init.d folder onto another system so we can more easily
examine them.

Since we are booted up into this device's actual installed embedded Linux operating system
you will notice tools like Netcat are not available. But on a positive note, “scp” is available.
Secure copy (scp) is an application that allows for secure copy communication of files and
folders to a host system running SSH. To use this, we will need to make sure your testing host
system has an SSH server installed. For our DEF CON IoT Village exercises lab systems were
running Ubuntu with OpenSSH-server installed. Instructions for installing and configuring this
for an Ubuntu host can be found online at https://ubuntu.com/server/docs/openssh-server.

On the Aruba UART console, the next step is to change directory to /etc and run the following
scp command.

scp -r init.d lab4@192.168.4.123:/home/lab4/Desktop/LAB/

● -r is the switch used to do a recursive copy of all files in the folder init.d
● lab4@ is the username with write access on the ssh host
● 192.168.4.123 should point to the host running ssh
● The folder /home/lab4/Desktop/LAB/ is the folder where the init.d folder and files will be

written to.

The output and results of this command are shown in Figure 47.

28

https://www.geeksforgeeks.org/scp-command-in-linux-with-examples/
https://ubuntu.com/server/docs/openssh-server

Figure 47:scp folder and file copy

Once copied from the Aruba AP, the files then can be more easily examined with your file editor
of choice, allowing for more effective understanding of the boot process and recovery and
startup methods being used. An example of this is shown in Figure 48.

Figure 48: Examining rcS run control file

As you can see, using scp is very simple for moving folders and files. But what if you wanted to
copy the contents of an MTD flash memory partition device? As shown in Figure 49, scp doesn’t
like it.

29

Figure 49: Attempted scp copy of /dev/mtd2

I found that the tftp command does work to copy MTD flash memory partition devices and
TFTP is installed on the devices, so we will take advantage of that by running the following
command:

tftp -l /dev/mtd0 -r mtd0.bin -p 192.168.4.123

The syntax for the tftp command shown above is:

● -l local file name
● -r remote file name to be written
● -p put file location

An example of the above command being used to tftp a copy of the /dev/mtd0 from the Aruba
AP to our tftp server, followed by running strings command to validate that the data appeared
to have been transferred correctly, is shown in Figure 50.

Figure 50: TFTP of MTD device /dev/mtd0

30

Keep on Hacking
Congratulations! You have completed this hands-on hardware hacking exercise.
Want to do some more? Check out our write-ups from previous DEF CONs and
some bonus IoT security blogs here.

About Rapid7
Rapid7 is creating a more secure digital future for all by helping organizations strengthen their security
programs in the face of accelerating digital transformation. Our portfolio of best-in-class solutions
empowers security professionals to manage risk and eliminate threats across the entire threat landscape
from apps to the cloud to traditional infrastructure to the dark web. We foster open source communities
and cutting-edge research–using these insights to optimize our products and arm the global security
community with the latest in attacker methodology. Trusted by more than 11,000 customers worldwide,
our industry-leading solutions and services help businesses stay ahead of attackers, ahead of the
competition, and future-ready for what’s next.

PRODUCTS
Cloud Security

XDR & SIEM

Threat Intelligence

Vulnerability Risk Management

Application Security

Orchestration & Automation

Managed Services

CONTACT US
rapid7.com/contact

To learn more or start a free trial, visit: https://www.rapid7.com/try/insight/

© RAPID7 2024 V1.0

31

https://www.rapid7.com/blog/tag/iot-security-news/
https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightconnect/
https://www.rapid7.com/services/managed-services/
https://www.rapid7.com/contact/
https://www.rapid7.com/trial/insight/
https://www.rapid7.com/try/insight/

